
24 February 2000 1

Xtensa
A new ISA and Approach

Tensilica: www.tensilica.comTensilica: www.tensilica.comTensilica: www.tensilica.comTensilica: www.tensilica.com
Earl Killian: www.killian.com/earlEarl Killian: www.killian.com/earlEarl Killian: www.killian.com/earlEarl Killian: www.killian.com/earl

24 February 2000 2

Presentation Goals
� How Tensilica and Xtensa came to beHow Tensilica and Xtensa came to beHow Tensilica and Xtensa came to beHow Tensilica and Xtensa came to be
� What Xtensa is, with motivation for the What Xtensa is, with motivation for the What Xtensa is, with motivation for the What Xtensa is, with motivation for the

decisions we madedecisions we madedecisions we madedecisions we made
• Historical approach

� Get you thinking about a new paradigmGet you thinking about a new paradigmGet you thinking about a new paradigmGet you thinking about a new paradigm
• How do application-specific processors

change the game?

� What are you interested in hearing about?What are you interested in hearing about?What are you interested in hearing about?What are you interested in hearing about?

24 February 2000 3

My Background
� Major ProjectsMajor ProjectsMajor ProjectsMajor Projects

• 2 operating systems (not Unix)
• 3 compilers (not gcc)
• 1 satellite network
• 4 processor instruction set designs
• 6 processor micro-architectures

� PlacesPlacesPlacesPlaces
• 1 University
• 3 Start-ups (founder of one)
• 1 Government lab
• 2 Medium-sized companies

24 February 2000 4

Outline
� About TensilicaAbout TensilicaAbout TensilicaAbout Tensilica

• History, getting started, etc.
� ApplicationApplicationApplicationApplication----Specific ProcessorsSpecific ProcessorsSpecific ProcessorsSpecific Processors

• What’s different
� Xtensa ISAXtensa ISAXtensa ISAXtensa ISA

• What we did and why
� Extensibility via the TIE (Tensilica Instruction Extensibility via the TIE (Tensilica Instruction Extensibility via the TIE (Tensilica Instruction Extensibility via the TIE (Tensilica Instruction

Extension) LanguageExtension) LanguageExtension) LanguageExtension) Language

24 February 2000 5

Tensilica Background
� Tensilica is the brainchild of Chris RowenTensilica is the brainchild of Chris RowenTensilica is the brainchild of Chris RowenTensilica is the brainchild of Chris Rowen

• founder and CEO
• formerly Intel, Stanford, MIPS, sgi, and

Synopsys
• an idea that wouldn’t leave him alone:

configurable processors
1997 1998 1999 2000

Founded Early Team Xtensa 1.0
$20M C round$10.6M B round

Xtensa 2.0
$2.3M A round

idea
try snps exploration

open office
build team

plan

initial development
trial selling

full selling
2.0 development

first customer

3.0 developmen

Xtensa 1.5

24 February 2000 6

Outline
� About TensilicaAbout TensilicaAbout TensilicaAbout Tensilica

• History, getting started, etc.
� ApplicationApplicationApplicationApplication----Specific ProcessorsSpecific ProcessorsSpecific ProcessorsSpecific Processors

• What’s different
� Xtensa ISAXtensa ISAXtensa ISAXtensa ISA

• What we did and why
� Extensibility via the TIE (Tensilica Instruction Extensibility via the TIE (Tensilica Instruction Extensibility via the TIE (Tensilica Instruction Extensibility via the TIE (Tensilica Instruction

Extension) LanguageExtension) LanguageExtension) LanguageExtension) Language

24 February 2000 7

Tensilica’s Mission
� From an early corporate overview:From an early corporate overview:From an early corporate overview:From an early corporate overview:

To be the leading provider of
application-specific microprocessor solutions

by delivering
configurable, ASIC-based cores

and
matching software development tools

� ThereforeThereforeThereforeTherefore
• Synthesizable, configurable, embedded processors

– Application is known at ASIC-design time!
– Key is to exploit application specificity

• Compiler and OS are as important as the processor
• Customers are system designers

– Very cost conscious customers — will only pay for
what they need

24 February 2000 8

The Opportunity
�A choice between hardA choice between hardA choice between hardA choice between hard----

wired, more optimized wired, more optimized wired, more optimized wired, more optimized
and softer, more flexible and softer, more flexible and softer, more flexible and softer, more flexible
implementationsimplementationsimplementationsimplementations
• Intensive optimization

is a bet on past
knowledge, stable
standards and
predictable markets

• Flexible design is a bet
on future learning and
unpredictable markets

�Sometimes, you can get Sometimes, you can get Sometimes, you can get Sometimes, you can get
~best of both~best of both~best of both~best of both

Optimality/
integration

(e.g. mW, $)

Flexibility/modularity
(e.g. time-to-market)

special
hardware

FPGAs
traditional

processors
+ SW

∆
>1

02

∆ >102

configurable
processors

+ SW

24 February 2000 9

Not the Desktop Model
Intel Pentium III

(~100mm2 in 0.18µ) Typical Xtensa processor
(~2mm2 in 0.18µ)

100x lower
cost and power

20x lower
parts count

10x lower
system price

onto system-on-a-chip IC

into handheld appliance

processor IC

into PC box

onto system board

processor core

24 February 2000 10

Technology Vision

Select Select Select Select
processor processor processor processor
options and options and options and options and
describe new describe new describe new describe new
instructions in instructions in instructions in instructions in
Web interfaceWeb interfaceWeb interfaceWeb interface

Using theUsing theUsing theUsing the
XXXXtensa tensa tensa tensa
processor processor processor processor
generator, generator, generator, generator,
create...create...create...create...

ALU

Pipe

I/O

Timer

MMURegister File

Cache

Tailored, Tailored, Tailored, Tailored,
HDL uP HDL uP HDL uP HDL uP
corecorecorecore

Customized Customized Customized Customized
Compiler, Compiler, Compiler, Compiler,
Assembler, Assembler, Assembler, Assembler,
Linker, Linker, Linker, Linker,
Debugger,Debugger,Debugger,Debugger,
SimulatorSimulatorSimulatorSimulator

Use Use Use Use
standard standard standard standard
library to library to library to library to
target to target to target to target to
the siliconthe siliconthe siliconthe silicon

24 February 2000 11

Types of Configurability
� Quantity, size, etc.Quantity, size, etc.Quantity, size, etc.Quantity, size, etc.

• Often significant payback (e.g. cache size)
� Options Options Options Options (sort of quantity 0 or 1)

• e.g. FP or not, MMU or not, DSP or not, …
� ParametersParametersParametersParameters

• e.g. addresses of vectors, memories, …
� Target specificationsTarget specificationsTarget specificationsTarget specifications

• e.g. synthesize for area at the cost of speed
• Many applications don’t need the maximum

processor performance
• Process, standard cell library, etc.

� ExtensibilityExtensibilityExtensibilityExtensibility
• Adding things that the component supplier didn’t

explicitly offer

24 February 2000 12

Sample Xtensa Configurability
�Cost, Power, PerformanceCost, Power, PerformanceCost, Power, PerformanceCost, Power, Performance
� ISAISAISAISA

•Endianness
•MUL16/MAC16
•Various miscellaneous
instructions

� InterruptsInterruptsInterruptsInterrupts
•Number of interrupts
•Type of interrupts
•Number of interrupt
levels

•Number of timers and
their interrupt levels

•more...

�MemoriesMemoriesMemoriesMemories
•32 or 64 entry regfile
•32, 64, or 128b bus widths
•Inst Cache

– 1KB to 16KB
– 16, 32, or 64B line size

•Data Cache/RAM
– ditto

•4-32-entry write buffer
�DebuggingDebuggingDebuggingDebugging

•No. inst addr breakpoints
•No. data addr breakpoints
•JTAG debugging
•Trace port

24 February 2000 13

Example .25µ Results
� 55 to 141MHz55 to 141MHz55 to 141MHz55 to 141MHz
� 28 to 84K gates28 to 84K gates28 to 84K gates28 to 84K gates
� 62 to 191mW power62 to 191mW power62 to 191mW power62 to 191mW power
� 2.0mm² to 8.3mm² including cache RAMs2.0mm² to 8.3mm² including cache RAMs2.0mm² to 8.3mm² including cache RAMs2.0mm² to 8.3mm² including cache RAMs

24 February 2000 14

Outline
� About TensilicaAbout TensilicaAbout TensilicaAbout Tensilica

• History, getting started, etc.
� ApplicationApplicationApplicationApplication----Specific ProcessorsSpecific ProcessorsSpecific ProcessorsSpecific Processors

• What’s different
� Xtensa ISAXtensa ISAXtensa ISAXtensa ISA

• What we did and why
� Extensibility via the TIE (Tensilica Instruction Extensibility via the TIE (Tensilica Instruction Extensibility via the TIE (Tensilica Instruction Extensibility via the TIE (Tensilica Instruction

Extension) LanguageExtension) LanguageExtension) LanguageExtension) Language

24 February 2000 15

Early Planning
� Product/ISA discussion started Product/ISA discussion started Product/ISA discussion started Product/ISA discussion started ≈≈≈≈3/19983/19983/19983/1998

• Do our own ISA or MIPS/ARM?
• What do we optimize for (performance, cost,

code size, etc.)?
• How low-end do we go (e.g. 16-bit)?
• If our own ISA, do we need an “on-ramp”?
• How much DSP?

� IssuesIssuesIssuesIssues
• Only 8 months planned to do first product!
• Legal issues using another’s ISA
• Many standard processor tricks unavailable in

synthesizable logic

24 February 2000 16

Our Guess at Our Customers’
Priorities

� SolutionSolutionSolutionSolution
� System (not processor) costSystem (not processor) costSystem (not processor) costSystem (not processor) cost

• processor die area
• code size
• power

� TimeTimeTimeTime----totototo----marketmarketmarketmarket
• ease of use
• verification
• debugging

� Energy efficiencyEnergy efficiencyEnergy efficiencyEnergy efficiency
� PerformancePerformancePerformancePerformance
� CompatibilityCompatibilityCompatibilityCompatibility

24 February 2000 17

Our Resulting ISA Priorities
� Code sizeCode sizeCode sizeCode size

• largest factor in system cost
� Configurability, ExtensibilityConfigurability, ExtensibilityConfigurability, ExtensibilityConfigurability, Extensibility

• provides best match to customer requirements, and
so optimizes system cost

� Processor costProcessor costProcessor costProcessor cost
• a small factor in system cost

� Energy efficiencyEnergy efficiencyEnergy efficiencyEnergy efficiency
• minor influence on ISA, but listed for when it matters

� PerformancePerformancePerformancePerformance
• when all else is equal, this becomes important

� ScalabilityScalabilityScalabilityScalability
� FeaturesFeaturesFeaturesFeatures

24 February 2000 18

The Importance of Code Size

� Based on base 0.18Based on base 0.18Based on base 0.18Based on base 0.18µµµµ implementation plus code RAM or cacheimplementation plus code RAM or cacheimplementation plus code RAM or cacheimplementation plus code RAM or cache
� Xtensa code ~10% smaller than ARM9 Thumb, ~50% smaller than MIPSXtensa code ~10% smaller than ARM9 Thumb, ~50% smaller than MIPSXtensa code ~10% smaller than ARM9 Thumb, ~50% smaller than MIPSXtensa code ~10% smaller than ARM9 Thumb, ~50% smaller than MIPS----Jade, ARM9 and ARCJade, ARM9 and ARCJade, ARM9 and ARCJade, ARM9 and ARC
� ARM9ARM9ARM9ARM9----Thumb has reduced performanceThumb has reduced performanceThumb has reduced performanceThumb has reduced performance
� RAM/cache density = 8KB/mmRAM/cache density = 8KB/mmRAM/cache density = 8KB/mmRAM/cache density = 8KB/mm2222

Area vs. Program InstructionsArea vs. Program InstructionsArea vs. Program InstructionsArea vs. Program Instructions

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 1000 2000 3000 4000 5000 6000 7000 8000
Program Size (Instructions)

Pr
oc

es
so

r +
 C

od
e

R
A

M
 m

m
2

Xtensa MIPS-4Kc ARC ARM9 ARM9-Thumb

24 February 2000 19

ISA Process
� MicroMicroMicroMicro----architecture was firmer than ISAarchitecture was firmer than ISAarchitecture was firmer than ISAarchitecture was firmer than ISA
� Created/circulated ISA alternativesCreated/circulated ISA alternativesCreated/circulated ISA alternativesCreated/circulated ISA alternatives
� Lots of arguing over alternativesLots of arguing over alternativesLots of arguing over alternativesLots of arguing over alternatives
� Some data collected (but not much time!)Some data collected (but not much time!)Some data collected (but not much time!)Some data collected (but not much time!)

• code size
• performance

� Generally converged on solutions by consensusGenerally converged on solutions by consensusGenerally converged on solutions by consensusGenerally converged on solutions by consensus
� Generally followed our priority listGenerally followed our priority listGenerally followed our priority listGenerally followed our priority list

24 February 2000 20

ISA Influences
� Major ISAs that influenced XtensaMajor ISAs that influenced XtensaMajor ISAs that influenced XtensaMajor ISAs that influenced Xtensa

• MIPS (e.g. compare-and-branch, MDMX, MIPS V)
• IBM Power (ISA aids for ifetch, address modes)
• Sun SPARC (register windows)
• ARM Thumb (code size)
• HP Playdoh (speculative loads)
• DSPs (loop instructions)

� Other ISAs that shaped my thinkingOther ISAs that shaped my thinkingOther ISAs that shaped my thinkingOther ISAs that shaped my thinking
• CDC 6600, Cray-1
• DEC PDP10
• DEC PDP11, Motorola 68000
• Multics, LLNL S-1, S-2
• Cydrome, Multiflow

24 February 2000 21

Target Pipeline

� One clock, risingOne clock, risingOne clock, risingOne clock, rising----edge triggered flipedge triggered flipedge triggered flipedge triggered flip----flopsflopsflopsflops
• no time borrowing between stages

� Use RAMUse RAMUse RAMUse RAM----compiler generated Instruction and Data RAMscompiler generated Instruction and Data RAMscompiler generated Instruction and Data RAMscompiler generated Instruction and Data RAMs
• registered address input

I R E M WInst0

I R E M WInst1

I R E M WInst2

I R E M WInst3

I R E M WInst4

C
ycle0

C
ycle1

C
ycle2

C
ycle3

C
ycle4

Load-Use

Branch-Target

I Instruction Cache Access
Instruction Align

R Register Read
Instruction Decode
Bypass, Issue decision

E Execute (ALU, TIE)
Branch decision

M Data Cache Access
Load align

W Register write

ALU

24 February 2000 22

Pipeline Issues
� Why not superscalar?Why not superscalar?Why not superscalar?Why not superscalar?

• Cost/benefit not right for this market
– 2× register file read and write ports
– Typical dual-issue adds 20-30%

performance boost, not 2×
• Design/verification time
• Balance

– Should add branch prediction or
branches cost too much

� Why 5Why 5Why 5Why 5----stage (1980’s RISC in 2000)?stage (1980’s RISC in 2000)?stage (1980’s RISC in 2000)?stage (1980’s RISC in 2000)?
• Cycle time cost too high for < 5 stages
• Energy and cost issues for > 5 stages

24 February 2000 23

Pipeline Implications
� Branches will be expensiveBranches will be expensiveBranches will be expensiveBranches will be expensive

• lack of time borrowing, edge-triggered RAM
• try to compensate in ISA with more

powerful branches
� Symmetry of I an M stages allows time for Symmetry of I an M stages allows time for Symmetry of I an M stages allows time for Symmetry of I an M stages allows time for

variable length instruction alignmentvariable length instruction alignmentvariable length instruction alignmentvariable length instruction alignment
� Standard RISC principles:Standard RISC principles:Standard RISC principles:Standard RISC principles:

• Instructions must be simple to decode,
issue, bypass

• Register file read addresses must from fixed
instruction fields

24 February 2000 24

Early Controversies
� Performance/scalability vs. code sizePerformance/scalability vs. code sizePerformance/scalability vs. code sizePerformance/scalability vs. code size
� Multiple instruction Multiple instruction Multiple instruction Multiple instruction sizes and instruction sizes and instruction sizes and instruction sizes and instruction ≠≠≠≠ 32b32b32b32b
� Register windowsRegister windowsRegister windowsRegister windows
� How to handle the small size of immediate How to handle the small size of immediate How to handle the small size of immediate How to handle the small size of immediate

operandsoperandsoperandsoperands
� Instruction mnemonicsInstruction mnemonicsInstruction mnemonicsInstruction mnemonics
� DSPDSPDSPDSP

24 February 2000 25

Performance vs. Code Size
� Traditional performanceTraditional performanceTraditional performanceTraditional performance----oriented ISAoriented ISAoriented ISAoriented ISA

• Fixed 32b instruction word
– supports 3 or 4 5-6b register fields
– supports easy superscalar growth path

� CodeCodeCodeCode----size oriented ISAsize oriented ISAsize oriented ISAsize oriented ISA
• Most instructions < 32b (usually 16b)

– 2 or 3 3-4b register fields (extra spills or moves)
• Multiple instruction sizes

– superscalar more difficult
� Considered 32/16, 24/12, and 24/16Considered 32/16, 24/12, and 24/16Considered 32/16, 24/12, and 24/16Considered 32/16, 24/12, and 24/16

• Two sizes differentiated by a single bit
� Tensilica chose 24/16 in line with our prioritiesTensilica chose 24/16 in line with our prioritiesTensilica chose 24/16 in line with our prioritiesTensilica chose 24/16 in line with our priorities

• best code size of the choices
• good performance from 3 4b register fields

24 February 2000 26

Register Windows
� Code size savings from elimination of Code size savings from elimination of Code size savings from elimination of Code size savings from elimination of

save/restoresave/restoresave/restoresave/restore
• savings very application dependent
• our estimate was 6-10%

� IssuesIssuesIssuesIssues
• larger register file (adds to processor area)

– especially with standard cell implementation
• may impact real-time applications
• windows not well-liked (colored by SPARC)

� Tensilica chose windows as per our prioritiesTensilica chose windows as per our prioritiesTensilica chose windows as per our prioritiesTensilica chose windows as per our priorities
• fixed SPARC problems

24 February 2000 27

Xtensa Instruction Formats
op0op1op2 r s t

op0op1imm8 s t

op0imm12 s t

op0imm16 t

op0imm18 n

op0s t

E.g. AR[r] ← AR[s] + AR[t]

E.g. if AR[s] < AR[t] goto PC+imm8

E.g. if AR[s] = 0 goto PC+imm12

E.g. AR[t] ← AR[t] + imm16

E.g. CALL0 PC+imm18

E.g. AR[r] ← AR[s] + AR[t]

r

24 February 2000 28

Code Size
� Bits per instruction reduction (0.62)Bits per instruction reduction (0.62)Bits per instruction reduction (0.62)Bits per instruction reduction (0.62)

• 24-bit encoding (25%)
• 16-bit optional encodings (12%)

� Instruction count (0.91)Instruction count (0.91)Instruction count (0.91)Instruction count (0.91)
• Compound instructions

-15% from compare-and-branch
-2% from shift add/subtract
-2% from shift mask (extract)
-2% from L32R vs. 2-instruction 32-bit immediate synthesis

• Register windows
-6% from elimination of functional call overhead

(save/restore)
• 24-bit encoding

+10% from register spill
+8% from small immediates

� Combined 0.91 Combined 0.91 Combined 0.91 Combined 0.91 ×××× 0.62 = 0.560.62 = 0.560.62 = 0.560.62 = 0.56

24 February 2000 29

Code Size Comparison — ARM

Xtensa code

L16: addx4 a2, a3, a5
l32i a10, a2, 0
beqz a10, L15
add a11, a4, a7
call8 insert

L15: addi a3, a3, 1
bge a6, a3,L16

ARM code

J4:ADD a1,sp,#4
LDR a1,[a1,a3,LSL#2]
CMP a1,#0
MOVNE a2,sp
BLNE insert
ADD a3,a3,#1
CMP a3,#&3e8
BLT J4

7 instructions
17 bytes

8 instructions
36 bytes

Thumb code

L4: LSL r1,r7,#2
ADD r0,sp,#4
LDR r0,[r0,r1]
CMP r0,#0
BEQ L13
MOV r1,sp
BL insert

L13:ADD r7,#1
CMP r7,r4
BLT L4

10 instructions
20 bytes

for (i=0; i < NUM; i++)
if (histogram[i] != NULL)

insert (histogram[i], &tree);

24 February 2000 30

Xtensa ISA Summary
� 80 base instructions80 base instructions80 base instructions80 base instructions

• Load and Store (8 instructions)
• Move (5 instructions)
• Shift (13 instructions)
• Arithmetic Operations (12 instructions)
• Logical Operations (AND , OR , XOR)
• Jump and Branch (29 instructions)
• Zero Overhead Loops (3 instructions)
• Pipeline Control (7 instructions)

24 February 2000 31

Xtensa ISA Features
Code Energy Perfor- Extens- Scal-
size efficiency mance ibility ibility

24242424----bit encoding bit encoding bit encoding bit encoding 3 3
16161616----bit encodingbit encodingbit encodingbit encoding 3 3
Register windowsRegister windowsRegister windowsRegister windows 3 3 3
Compare and branchCompare and branchCompare and branchCompare and branch 3 3
Bit test/mask and branch Bit test/mask and branch Bit test/mask and branch Bit test/mask and branch 3 3
No branch delayNo branch delayNo branch delayNo branch delay 3 3
Funnel shiftsFunnel shiftsFunnel shiftsFunnel shifts 3
Right shift and maskRight shift and maskRight shift and maskRight shift and mask 3 3
Conditional movesConditional movesConditional movesConditional moves 3 3
Speculative loadsSpeculative loadsSpeculative loadsSpeculative loads 3 3
ZeroZeroZeroZero----overhead loopoverhead loopoverhead loopoverhead loop 3 3 3
TIETIETIETIE 3 3 3 3
MultiprocessorMultiprocessorMultiprocessorMultiprocessor 3 3
DSP optionDSP optionDSP optionDSP option 3
FP optionFP optionFP optionFP option 3

24 February 2000 32

Compare and Branch

SPARCSPARCSPARCSPARC
cmp %o0, %o1
bge L1
<<delayslot>>

or %g0, 0, %o2
L1:

2 cycle branch untaken or taken2 cycle branch untaken or taken2 cycle branch untaken or taken2 cycle branch untaken or taken
(3 if nop in delay slot)(3 if nop in delay slot)(3 if nop in delay slot)(3 if nop in delay slot)

CCCC
if (a < b) {

c = 0;
}

XtensaXtensaXtensaXtensa
bge a2, a3, L1
movi a4, 0

L1:

1 cycle branch if untaken,1 cycle branch if untaken,1 cycle branch if untaken,1 cycle branch if untaken,
3 cycle branch if taken 3 cycle branch if taken 3 cycle branch if taken 3 cycle branch if taken

24 February 2000 33

Zero-Overhead Loops
loopgtz a0, endloop

loop:
body0
•
•
•

bodyN
endloop:

� Processor automatically branches to body0 after Processor automatically branches to body0 after Processor automatically branches to body0 after Processor automatically branches to body0 after
executing bodyN the number of times in a0executing bodyN the number of times in a0executing bodyN the number of times in a0executing bodyN the number of times in a0

� No branch penalty in most casesNo branch penalty in most casesNo branch penalty in most casesNo branch penalty in most cases
� Implemented with the LBEG, LEND, and LCOUNT special Implemented with the LBEG, LEND, and LCOUNT special Implemented with the LBEG, LEND, and LCOUNT special Implemented with the LBEG, LEND, and LCOUNT special

registersregistersregistersregisters

24 February 2000 34

Overlapped Register Windows

F
G

•Routine F calls routine G
incrementing register file
pointer by 4, 8, or 12

•F and G’s windows into the
physical register file overlap

•F can pass register
parameters to G by writing
its high registers

•The register file pointer
increment hides 4-12 of F’s
registers

•No save or restores required
unless pointer wraps

overlap

hidden

24 February 2000 35

Window Code Example
Foo:

entry sp, 16
movi a6, 1 // a6 will become a2 in Bar after entry
l32i a7, a2, 4 // a7 will become a3 in Bar after entry
call4 Bar // call Bar, request increment of 4
addi a2, a6, 1 // a6 is Bar’s a2 before the retw
retw

Bar:
entry sp, 16 // move window by caller’s increment
add a2, a2, a3 // add our arguments, with result

// to return value register
retw // move window back (decrement)

24 February 2000 36

Window Code Comparison
TraditionalTraditionalTraditionalTraditional
f: addi sp, sp, -framesize

s32i a0, framesize-12(sp)
s32i a12, framesize-8(sp)
s32i a13, framesize-4(sp)
…
l32i a0, framesize-12(sp)
l32i a12, framesize-8(sp)
l32i a13, framesize-4(sp)
addi sp, sp, framesize
ret

With WindowsWith WindowsWith WindowsWith Windows
f: entry sp, framesize

…
retw

� SmallerSmallerSmallerSmaller
� FasterFasterFasterFaster

24 February 2000 37

Outline
� About TensilicaAbout TensilicaAbout TensilicaAbout Tensilica

• History, getting started, etc.
� ApplicationApplicationApplicationApplication----Specific ProcessorsSpecific ProcessorsSpecific ProcessorsSpecific Processors

• What’s different
� Xtensa ISAXtensa ISAXtensa ISAXtensa ISA

• What we did and why
� Extensibility via the TIE (Tensilica Instruction Extensibility via the TIE (Tensilica Instruction Extensibility via the TIE (Tensilica Instruction Extensibility via the TIE (Tensilica Instruction

Extension) LanguageExtension) LanguageExtension) LanguageExtension) Language

24 February 2000 38

Productivity Gap

1

10,000,000

1,000.000

100,000

10,000

100

1,000

10

1998 2003

Logic Transistor / Chip (K)

58%/Yr. complexity
growth rate

21%/Yr. Productivity
growth rate

Transistor/Staff-month
Source: NTRS’97

24 February 2000 39

TIE Overview

∗∗∗∗∗∗∗
∗∗∗∗
∗∗∗∗∗∗∗∗
∗∗∗

Application

Processor
Verilog

RTL

Software
Tools

ASIC
flow

Software
compile

uP

Mem

Configure
Base uP

Processor
Generator

∗∗∗∗∗∗∗
∗∗∗∗
∗∗∗∗∗∗∗∗
∗∗∗

Describe new
inst in TIE

Software
Generator

∗∗∗

24 February 2000 40

TIE Design Cycle
Develop application in C/C++

Profile and analyze

Id potential new instructions

Describe new instructions

Generate new software tools

Correct ?N Y

Run cycle-accurate ISS

Build the entire processor

Acceptable ?N

Y
Measure hardware impact

Acceptable ?N

Compile and run application
Y

24 February 2000 41

Tensilica Instruction Extension
� No microNo microNo microNo micro----architecture (implementation) detailsarchitecture (implementation) detailsarchitecture (implementation) detailsarchitecture (implementation) details

• same TIE will work with new base
• decode, interlock, bypass, and pipelining

automatic
� Automatic configuration of software toolsAutomatic configuration of software toolsAutomatic configuration of software toolsAutomatic configuration of software tools

• compiler
• instruction-set simulator
• debugger
• etc.

� Automatic synthesis of efficient hardware Automatic synthesis of efficient hardware Automatic synthesis of efficient hardware Automatic synthesis of efficient hardware
compatible with the base processorcompatible with the base processorcompatible with the base processorcompatible with the base processor

� Extension language, not a language to describe Extension language, not a language to describe Extension language, not a language to describe Extension language, not a language to describe
a complete CPa complete CPa complete CPa complete CPUUUU

24 February 2000 42

Major sections in TIE
� Instruction fieldsInstruction fieldsInstruction fieldsInstruction fields
� OpcodeOpcodeOpcodeOpcode
� OperandsOperandsOperandsOperands
� Instruction semanticsInstruction semanticsInstruction semanticsInstruction semantics

24 February 2000 43

Instruction Field Definition
� TIE code:TIE code:TIE code:TIE code:

field op0 Inst[3:0]
field op1 Inst[19:16]
field op2 Inst[23:20]
field r Inst[15:12]
field s Inst[11:8]
field t Inst[7:4]

op2 op1 r s t op0 Inst
023

24 February 2000 44

Opcode Definition

� TIE code:TIE code:TIE code:TIE code:
opcode QRST op0=4’b0000
opcode CUST0 op1=4’b1100 QRST
opcode ADD4 op2=4’b0000 CUST0

� TIE compiler generates decode logicTIE compiler generates decode logicTIE compiler generates decode logicTIE compiler generates decode logic

0000 1101 r s t 0000 ADD4 Instruction
023

24 February 2000 45

Operand Definition
� TIE code:TIE code:TIE code:TIE code:

operand ars s {AR[s]}
operand art t {AR[t]}
operand arr r {AR[r]}
iclass rrr {ADD4}{out arr, in ars, in art}

� Assembly example:Assembly example:Assembly example:Assembly example:
ADD4 a2, a3, a5

� C example:C example:C example:C example:
X = ADD4(y, z);

RF
ra0 ra1

rd0 rd1

wa

wdarr

artars

0000 1101 r s t 0000 ADD4 Instruction

�TIE compiler generates TIE compiler generates TIE compiler generates TIE compiler generates
interlock and bypass interlock and bypass interlock and bypass interlock and bypass
logiclogiclogiclogic

24 February 2000 46

Semantic Description
� TIE code:TIE code:TIE code:TIE code:

semantic add4_semantic {ADD4} {
wire [7:0] arr0 = ars[7: 0] + art[7: 0];
wire [7:0] arr1 = ars[15: 8] + art[15: 8];
wire [7:0] arr2 = ars[23:16] + art[23:16];
wire [7:0] arr3 = ars[31:24] + art[31:24];
assign arr = {arr3, arr2, arr1, arr0}; }

++++

RF
ra0 ra1

rd0 rd1

wa

wd

arr

artars

0000 1101 r s t 0000 ADD4 Instruction

24 February 2000 47

Complete Example
opcode ADD4 op2=4’b0000 CUST0
iclass rrr {ADD4} {out arr, in ars, in art}
semantic add4_semantic {ADD4} {

wire arr0 = ars[7: 0] + art[7: 0];
wire arr1 = ars[15: 8] + art[15: 8];
wire arr2 = ars[23:16] + art[23:16];
wire arr3 = ars[31:24] + art[31:24];
assign arr = {arr3, arr2, arr1, arr0};

}

24 February 2000 48

TIE Development Process

∗∗∗∗∗∗∗
∗∗∗∗
∗∗∗∗∗∗∗∗
∗∗∗

TIE
Description

TIE
Compiler

Native
C stubs

Software
tools

ISS

Xtensa
RTL

ISS.so

cc.so

TIE.v

TIE
Development
Kits

24 February 2000 49

Using TIE Instruction in C
#ifdef NATIVE
#include ADD4_cstub.c
#endif

int a[], b[], c[];
char *x=a, *y=b, *z=c;
...
read(x);
read(y);
for (i = 0; i < n; i++) {

c[i] = ADD4(a[i], b[i]);
}
write(z);
...

24 February 2000 50

Testing new instructions on
the host

shell> gcc -o app –DNATIVE app.c
shell> app

� ObjectivesObjectivesObjectivesObjectives
• Verify TIE descriptionVerify TIE descriptionVerify TIE descriptionVerify TIE description
• Verify application codeVerify application codeVerify application codeVerify application code

� AdvantageAdvantageAdvantageAdvantage
• Short iteration cycleShort iteration cycleShort iteration cycleShort iteration cycle

24 February 2000 51

Testing new instructions on
Xtensa simulator

shell> xt-gcc -o app app.c
shell> iss app

� ObjectivesObjectivesObjectivesObjectives
• Testing TIE descriptionTesting TIE descriptionTesting TIE descriptionTesting TIE description
• Testing applicationTesting applicationTesting applicationTesting application
• Measuring performanceMeasuring performanceMeasuring performanceMeasuring performance

� AdvantageAdvantageAdvantageAdvantage
• CycleCycleCycleCycle----accurateaccurateaccurateaccurate

24 February 2000 52

Checking the Hardware
shell> vi app.dcsh
shell> dc_shell -f app.dcsh
shell> vi app.report

� ObjectivesObjectivesObjectivesObjectives
• Measuring cycleMeasuring cycleMeasuring cycleMeasuring cycle----time impacttime impacttime impacttime impact
• Measuring area impactMeasuring area impactMeasuring area impactMeasuring area impact

� AdvantageAdvantageAdvantageAdvantage
• TimeTimeTimeTime----accurateaccurateaccurateaccurate
• CostCostCostCost----accurateaccurateaccurateaccurate

24 February 2000 53

Data Encryption Standard
� Initial stepInitial stepInitial stepInitial step

(R, L) = Initial_permutation(Din(R, L) = Initial_permutation(Din(R, L) = Initial_permutation(Din(R, L) = Initial_permutation(Din64646464))))
� Iterate 16 timesIterate 16 timesIterate 16 timesIterate 16 times

• Key generation
(C, D) = PC1(k)
n = rotate_amount (function of iteration count)
C = rotate_right(C, n)
D = rotate_right (D, n)
K = PC2(D, C)

• Encryption
R i+1 = Li ⊕ Permutation (S_Box (K ⊕ Expansion (R)))
L i+1 = Ri

� Final stepFinal stepFinal stepFinal step
DoutDoutDoutDout64646464 = Final_permutation(L, R)= Final_permutation(L, R)= Final_permutation(L, R)= Final_permutation(L, R)

24 February 2000 54

DES Software Implementation
static unsigned permute(unsigned char *table, int n,

unsigned hi, unsigned lo)
{

int ib, ob;
unsigned out = 0;
for (ob = 0; ob < n; ob++) {

ib = table[ob] - 1;
if (ib >= 32) {

if (hi & (1 << (ib-32))) out |= 1 << ob;
} else {

if (lo & (1 << ib)) out |= 1 << ob;
}

}
return out;

}
Too much computation!
Too slow!

24 February 2000 55

DES Hardware Implementation
Initial Permutation

Expansion
Permutation

S Boxes

P Permutation

⊕

⊕

Final Permutation

Key
Generation

State
Machine

Complicated control logic!
Too hard!

24 February 2000 56

GETDATA ars, hilo

DES immediate

SETDATA ars, art

DES Implemented in TIE
Initial Permutation

Expansion
Permutation

S Boxes

P Permutation

⊕

⊕

Final Permutation

Key
Generation

State
Machine

SETKEY ars, art

24 February 2000 57

DES Program
SETKEY(K_hi, K_lo);
for (;;) {

… /* read encrypted data */
SETDATA(D_hi, D_lo);
DES(DECRYPT1);
DES(DECRYPT2);
DES(DECRYPT2);
DES(DECRYPT2);
DES(DECRYPT2);
DES(DECRYPT2);
DES(DECRYPT2);
DES(DECRYPT1);
DES(DECRYPT2);
DES(DECRYPT2);
DES(DECRYPT2);
DES(DECRYPT2);
DES(DECRYPT2);
DES(DECRYPT2);
DES(DECRYPT1);
DES(DECRYPT1);
E_hi = GETDATA(hi);
E_lo = GETDATA(lo);
… /* write data */ }

SETKEY(K_hi, K_lo);
for (;;) {

… /* read data */
SETDATA(D_hi, D_lo);
DES(ENCRYPT1);
DES(ENCRYPT1);
DES(ENCRYPT2);
DES(ENCRYPT2);
DES(ENCRYPT2);
DES(ENCRYPT2);
DES(ENCRYPT2);
DES(ENCRYPT2);
DES(ENCRYPT1);
DES(ENCRYPT2);
DES(ENCRYPT2);
DES(ENCRYPT2);
DES(ENCRYPT2);
DES(ENCRYPT2);
DES(ENCRYPT2);
DES(ENCRYPT1);
E_hi = GETDATA(hi);
E_lo = GETDATA(lo);
… /* write encrypted data */ }

DecryptionEncryption

24 February 2000 58

Triple DES Example

�Add 4 TIE instructions:Add 4 TIE instructions:Add 4 TIE instructions:Add 4 TIE instructions:
• 80 lines of TIE

description
• No cycle time impact
• ~1700 additional gates
• Code-size reduced

DES Performance

43
50 53

72

0

20

40

60

80

1024 64 8 Mean
Block Size (Bytes)

Sp
ee

du
p

(X
)

� Application:Application:Application:Application:
• Secure Shell Tools (SSH)
• Internet Protocol for Security (IPSEC)

24 February 2000 59

Result: Flexibility + Efficiency

CDMA (wireless)CDMA (wireless)

Improvement in MIPS over general-purpose 32b RISC
2x 4x 6x 8x 10x 50x1x

+9000 gates

+4000 gates

+4500 gates

+8000 gates

JPEG (cameras)JPEG (cameras) +7500 gates

IP
Routing

IP
Routing

+6500 gatesFIR Filter (telecom)FIR Filter (telecom)

Viterbi Decoding (wireless)Viterbi Decoding (wireless)

100x

DES Encryption (IPSEC, SSH)DES Encryption (IPSEC, SSH)

Motion Estimation (video)Motion Estimation (video)
+30000 gates

24 February 2000 60

Cost <$1 , 5 Cost <$1 , 5 Cost <$1 , 5 Cost <$1 , 5 ----100x speed100x speed100x speed100x speed----upupupup
Application Speed-up over 32b RISC (18 examples)

65

70

75

80

85

90

1 10 100

Pr
oc

es
so

r C
os

t (
ce

nt
s)

Application Speed-up over 32b RISC (18 examples)

65

70

75

80

85

90

1 10 100

Pr
oc

es
so

r C
os

t (
ce

nt
s)

• Cost = marginal cost for core+memory in 0.25µ foundry in volume
• Data from communication and consumer applications: FIR filter, Viterbi, DES, JPEG, Motion Estimation, W-CDMA,

Packet Flow, RGB2CYMK, RGB2CYMK, RGB2YIQ, Grayscale Filter, Auto-Correlation,

24 February 2000 61

A Common TIE Paradigm
Initial Permutation

Expansion
Permutation

S Boxes

P Permutation

⊕

⊕

Final Permutation

Key
Generation

State
Machine

ALU

Software: Control Hardware: Computation

24 February 2000 62

ApplicationApplicationApplicationApplication----specific instructionsspecific instructionsspecific instructionsspecific instructions

Summary continued

Hardware Software

Computation

Control easy

easy hard

hard

24 February 2000 63

Conclusion
� PresentationPresentationPresentationPresentation

• About Tensilica
• Application-Specific Processors
• Xtensa ISA
• TIE

� Is there anything else you would like me to Is there anything else you would like me to Is there anything else you would like me to Is there anything else you would like me to
cover?cover?cover?cover?

